STATUS: work in progress Hidden Markov Models. More...
#include "mathadd.h"#include "definitions.h"#include "eeg.h"#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>
Go to the source code of this file.
Data Structures | |
| struct | CPHiddenMarkovModel |
Functions | |
| CPHiddenMarkovModel * | cphmm_alloc (int K, int n, int M, int Q, int J) |
| void | cphmm_free (CPHiddenMarkovModel *m) |
| double | cphmm_get_transition_prob (CPHiddenMarkovModel *m, int k, int i, int j) |
| void | cphmm_init (CPHiddenMarkovModel *m, double **X) |
| CPHiddenMarkovModel * | eeg_cphmm_init (EEG *eeg, int channel, double **X) |
STATUS: work in progress Hidden Markov Models.
Implements the continuous profile model from:
Listgarten et al. Multiple alignment of continuous time series. Advances in Neural Information Processing Systems (2005) vol. 17 pp. 817–824
Definition in file hmm.h.
| CPHiddenMarkovModel* cphmm_alloc | ( | int | K, | |
| int | n, | |||
| int | M, | |||
| int | Q, | |||
| int | J | |||
| ) |
| void cphmm_free | ( | CPHiddenMarkovModel * | m | ) |
| double cphmm_get_transition_prob | ( | CPHiddenMarkovModel * | m, | |
| int | k, | |||
| int | i, | |||
| int | j | |||
| ) |
STATUS: work in progress return state transition probabilities from state i to state j in trace k:
where
Details see Listgarten et al. 2005
| void cphmm_init | ( | CPHiddenMarkovModel * | m, | |
| double ** | X | |||
| ) |
initializing the model according to the parameters from Listgarten et al. 2005:
| m | the model | |
| X | the data, K x n |
| CPHiddenMarkovModel* eeg_cphmm_init | ( | EEG * | eeg, | |
| int | channel, | |||
| double ** | X | |||
| ) |
1.7.0